Fast, easy, and collaborative Apache SparkTM based analytics service
Unlock insights from all your data and build artificial intelligence (AI) solutions with Azure Databricks, set up your Apache Spark™ environment in minutes, autoscale, and collaborate on shared projects in an interactive workspace. Azure Databricks supports Python, Scala, R, Java, and SQL, as well as data science frameworks and libraries including TensorFlow, PyTorch, and scikit-learn.
Azure Databricks provides the latest versions of Apache Spark and allows you to seamlessly integrate with open source libraries. Spin up clusters and build quickly in a fully managed Apache Spark environment with the global scale and availability of Azure. Clusters are set up, configured, and fine-tuned to ensure reliability and performance without the need for monitoring. Take advantage of autoscaling and auto-termination to improve total cost of ownership (TCO).
Collaborate effectively on shared projects using the interactive workspace and notebook experience, whether you’re a data engineer, data scientist, or business analyst. Build with your choice of language, including Python, Scala, R, and SQL. Get easy version control of notebooks with GitHub and Azure DevOps.
Access advanced automated machine learning capabilities using the integrated Azure Machine Learning to quickly identify suitable algorithms and hyperparameters. Simplify management, monitoring, and updating of machine learning models deployed from the cloud to the edge. Azure Machine Learning also provides a central registry for your experiments, machine learning pipelines, and models.
Combine data at any scale and get insights through analytical dashboards and operational reports. Automate data movement using Azure Data Factory, then load data into Azure Data Lake Storage, transform and clean it using Azure Databricks, and make it available for analytics using Azure Synapse Analytics. Modernize your data warehouse in the cloud for unmatched levels of performance and scalability.
Simple data processing on autoscaling infrastructure, powered by highly optimized Apache Spark™ for up to 50x performance gains.
One-click access to preconfigured machine learning environments for augmented machine learning with state-of-the-art and popular frameworks such as PyTorch, TensorFlow, and scikit-learn.
Track and share experiments, reproduce runs, and manage models collaboratively from a central repository.
Use your preferred language, including Python, Scala, R, Spark SQL and .Net—whether you use serverless or provisioned compute resources.
Quickly access and explore data, find and share new insights, and build models collaboratively with the languages and tools of your choice.
Bring data reliability and scalability to your existing data lake with an open source transactional storage layer designed for the full data lifecycle.